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Influence maximization in complex networks
through optimal percolation

Flaviano Morone' & Hernan A. Makse'

The whole frame of interconnections in complex networks hinges
on a specific set of structural nodes, much smaller than the total
size, which, if activated, would cause the spread of information to
the whole network’, or, if immunized, would prevent the diffusion
of a large scale epidemic>®. Localizing this optimal, that is, min-
imal, set of structural nodes, called influencers, is one of the most
important problems in network science*’. Despite the vast use of
heuristic strategies to identify influential spreaders® ', the prob-
lem remains unsolved. Here we map the problem onto optimal
percolation in random networks to identify the minimal set of
influencers, which arises by minimizing the energy of a many-body
system, where the form of the interactions is fixed by the non-
backtracking matrix'® of the network. Big data analyses reveal that
the set of optimal influencers is much smaller than the one pre-
dicted by previous heuristic centralities. Remarkably, a large num-
ber of previously neglected weakly connected nodes emerges
among the optimal influencers. These are topologically tagged as
low-degree nodes surrounded by hierarchical coronas of hubs, and
are uncovered only through the optimal collective interplay of all
the influencers in the network. The present theoretical framework
may hold a larger degree of universality, being applicable to other
hard optimization problems exhibiting a continuous transition
from a known phase’®.

The optimal influence problem was initially introduced in the con-
text of viral marketing', and its solution was shown to be NP-hard* for
a generic class of linear threshold models of information spreading'”*®.
Indeed, finding the optimal set of influencers is a many-body problem
in which the topological interactions between them play a crucial
role’>™. On the other hand, there has been an abundant production
of heuristic rankings to identify influential nodes and ‘superspreaders’
in networks®"*>'®. The main problem is that heuristic methods do not
optimize a global function of influence. As a consequence, there is no
guarantee of their performance.

Here we address the problem of quantifying nodes’ influence by
finding the optimal (that is, minimal) set of structural influencers.
After defining a unified mathematical framework for both immuniza-
tion and spreading, we provide its optimal solution in random net-
works by mapping the problem onto optimal percolation. In addition,
we present CI (Collective Influence), a scalable algorithm to solve
the optimization problem in large-scale real data sets. The thorough
comparison with competing methods (Supplementary Information
section I*°) ultimately establishes the better performance of our algo-
rithm. By taking into account collective influence effects, our optim-
ization theory identifies a new class of strategic influencers, called
‘weak nodes’, which outrank the hubs in the network. Thus, the top
influencers are highly counterintuitive: low-degree nodes play a major
broker role in the network, and despite being weakly connected, can be
powerful influencers.

The problem of finding the minimal set of activated nodes'"® to
spread information to the whole network® or to optimally immunize a
network against epidemics'' can be exactly mapped onto optimal per-
colation (see Supplementary Information section IIB). This mapping

provides the mathematical support to the intuitive relation between
influence and the concept of cohesion of a network: the most influ-
ential nodes are the ones forming the minimal set that guarantees a
global connection of the network®'°. We call this minimal set the
‘optimal influencers’ of the network. At a general level, the optimal
influence problem can be stated as follows: find the minimal set of
nodes which, if removed, would break down the network into many
disconnected pieces. The natural measure of influence is, therefore, the
size of the largest (giant) connected component as the influencers are
removed from the network.

We consider a network composed of N nodes tied with M links with
an arbitrary-degree distribution. Let us suppose we remove a certain
fraction q of the total number of nodes. It is well known from percola-
tion theory®' that, if we choose these nodes randomly, the network
undergoes a structural collapse at a certain critical fraction where
the probability of existence of the giant connected component
vanishes, G = 0. The optimal influence problem corresponds to find-
ing the minimum fraction g of influencers to fragment the network:
q. = min{q € [0,1]: G(g) = 0}.

Let the vector n= (ny,..., ny) represent which node is removed
(n; =0, influencer) or left (n;=1, the rest) in the network
(g=1- 1/N >~.n;), and consider a link from i to j (i— j). The order
parameter of the influence problem is the probability that i belongs
to the giant component in a modified network where j is absent, v;_,;
(refs 22, 23). Clearly, in the absence of a giant component we find
{vin;j=0} for all i—j. The stability of the solution {v,,;=0} is
controlled by the largest eigenvalue A(m; q) of the linear operator M,
6\),'_,]'
avk—»[ {\7,4/:0}.
We find for locally tree-like random graphs (see Fig. la and
Supplementary Information section II):

Misping = miBroiisg (1)

where Bj_/;; is the non-backtracking matrix of the network'>*,
The matrix By_;_; has non-zero entries only when (k— ¢, i— j)
form a pair of consecutive non-backtracking directed edges, that is,
(k— €, € — j) with k # j. In this case By 4-; = 1 (equation (13) in

defined on the 2M X 2M directed edges as My ;; =

Supplementary Information). Powers of the matrix 53 count the num-
ber of non-backtracking walks of a given length in the network
(Fig. 1b)**, much in the same way as powers of the adjacency matrix
count the number of paths®. Operator B has recently received a lot of
attention thanks to its high performance in the problem of community
detection®**. We show its topological power in the problem of
optimal percolation.

Stability of the solution {v;_,; = 0} requires A(m; q) < 1. The optimal
influence problem for a given g (=¢.) can be rephrased as finding the
optimal configuration n that minimizes the largest eigenvalue A(n; q)
(Fig. 1c). The optimal set n* of Ng. influencers is obtained when the
minimum of the largest eigenvalue reaches the critical threshold:

An*;q)=1 (2)
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Figure 1| The non-backtracking (NB) matrix and weak nodes. a, The largest
eigenvalue 4 of M exemplified on a simple network. The optimal strategy
for immunization and spreading minimizes 4 by removing the minimum
number of nodes (optimal influencers) that destroys all the loops. Left panel,
the action of the matrix M is on the directed edges of the network. The entry
M333-5 =n38,.33-5 =13 encodes the occupancy (n3 = 1) or vacancy

(n; = 0) of node 3. In this particular case, the largest eigenvalue is 2 = 1.
Centre panel, non-optimal removal of a leaf, n, = 0, which does not decrease 4.
Right panel, optimal removal of a loop, 3 = 0, which decreases / to zero.

b, A NB walk is a random walk that is not allowed to return back along the
edge that it just traversed. We show a NB open walk (€ = 3), a NB closed
walk with a tail (€ = 4), and a NB closed walk with no tails (€ = 5). The NB
walks are the building blocks of the diagrammatic expansion to calculate A.

¢, Representation of the global minimum over n of the largest eigenvalue 4 of
M versus q. When q = g, the minimum is at A = 0. Then, G = 0 is stable
(still, non-optimal configurations exist with 4> 1 for which G > 0). When

q < 4., the minimum of the largest eigenvalue is always 4 > 1, the solution

G = 0 is unstable, and then G > 0. At the optimal percolation transition, the
minimum is at n* with A(n*, g.) = 1.Forqg = 0,wefind A= — 1 (x = I3k,
where k is the node degree) which is the largest eigenvalue of 3 for random
networks® with all nodes present (n; = 1). When 4 = 1, the giant component is
reduced to a tree plus one single loop (unicyclic graph), which is suddenly
destroyed at the transition g, to become a tree, causing the abrupt fall of 1

to zero. d, Ball(i, €) of radius € around node i is the set of nodes at distance ¢
from i, and 0Ball is the set of nodes on the boundary. The shortest path from i
to j is shown in red. e, Example of a weak node: a node with a small number of
connections surrounded by hierarchical coronas of hubs at different ¢ levels.

The formal mathematical mapping of the optimal influence problem
to the minimization of the largest eigenvalue of the modified non-
backtracking matrix for random networks, equation (2), represents
our first main result.

An example of a non-optimized solution corresponds to choosing
n; at random and decoupled from the non-backtracking matrix*»*’
(random percolation®, Supplementary Information section IID).
In the optimized case, we seek to derandomize the selection of
the set n; = 0 and optimally choose them to find the best configura-
tion n* with the lowest g. according to equation (2). The eigen-
value A(n) (from now on we omit g in A(m;q) = A(n), which is
always kept fixed) determines the growth rate of an arbitrary
vector w, with 2M entries after € iterations of the matrix
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M:|wy(n)| = (wz\w(ﬁ = | Mwo|= <Wo’(/\;le)"'/\;18’w0>i~ ollog(n).
The largest eigenvalue is then calculated by the power method:

(3)

Equation (3) is the starting point of an (infinite) perturbation series
that provides the exact solution to the many-body influence problem in
random networks and therefore contains all physical effects, including
the collective influence. In practice, we minimize the cost energy function
of influence |w,(n)| in equation (3) for a finite €. The solution rapidly
converges to the exact value as € — oo, the faster the larger the spectral
gap. We find for £=1, to leading order in 1/N (Supplementary
Information section IIE):

N
wimP=> (-1 > (
jedBall(i, 26— 1)

i=1

I1

kePZ[,l(i,j)

where Ball(i, €) is the set of nodes inside a ball of radius ¢ (defined as the
shortest path) around node i, dBall(i, €) is the frontier of the ball, P,(i, j)
is the shortest path of length € connecting i and j (Fig. 1d), and k; is the
degree of node i.

The first collective optimization in equation (4) is £ = 1. We find
|w1(n)|2 = ZZ:1Aij(ki* 1)(kj—1)nin;, where A;; is the adjacency
matrix (equation (39) in Supplementary Information). This term is
interpreted as the energy of an antiferromagnetic Ising model with
random bonds in a random external field at fixed magnetization,
which is an example of a pair-wise NP-complete spin-glass whose
solution is found in Supplementary Information section III with the
cavity method*® (Extended Data Fig. 2).

For €=2, the problem can be mapped exactly to a statistical
mechanical system with many-body interactions which can be recast
in terms of a diagrammatic expansion, equations (41)-(49) in Supple-
mentary Information. For example, |w (1) * leads to 4-body interactions
(equation (45) in Supplementary Information), and, in general, the
energy cost |w,(n)|* contains 2¢-body interactions. As soon as € = 2,
the cavity method becomes much more complicated to implement and
we use another suitable method, called extremal optimization (EO)*
(Supplementary Information section IV). This method estimates the true
optimal value of the threshold by finite-size scaling following extrapola-
tion to € — oo (Extended Data Figs 3, 4). However, EO is not scalable to
find the optimal configuration in large networks. Therefore, we develop
an adaptive method, which performs excellently in practice, preserves
the features of EO, and is highly scalable to present-day big data.

The idea is to remove the nodes causing the biggest drop in the
energy function, equation (4). First, we define a ball of radius ¢ around
every node (Fig. 1d). Then, we consider the nodes belonging to the
frontier JBall(i, €) and assign to node i the collective influence (CI)
strength at level € following equation (4):

CL)=(k—-1) > (k=1 (5)

jeaBall(i, )

”k) (ki—1) (4)

We notice that, while equation (4) is valid only for odd radii of the ball,
CI,(i) is defined also for even radii. This generalization is possible by
considering an energy function for even radii analogous to equation
(4), as explained in Supplementary Information section IIG. The case
of one-body interaction with zero radius € =0 (equation (59) in
Supplementary Information) leads to the high-degree (HD) ranking
(equation (62) in Supplementary Information)*’.

The collective influence, equation (5), is our second and most
important result since it is the basis for the highly scalable and opti-
mized CI algorithm which follows. In the beginning, all the nodes are
present: n; = 1 for all i. Then, we remove node i* with highest CI, and
set n; = 0. The degree of each neighbour of i* is decreased by one, and
the procedure is repeated to find the new top CI node to remove. The
algorithm is terminated when the giant component is zero (see
Supplementary Information section V for implementation, and
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Figure 2 | Exact optimal solution and performance of CI in synthetic
networks. a, G(q) in an ER network (N =2 X 10°, {k) = 3.5, error bars are
s.e.m. over 20 realizations). We show the true optimal solution found with EO
(X’ symbol), and also using CI, HDA, PR, HD, CC, EC and k-core methods.
The other methods are not scalable and perform worse than HDA and are
treated in Supplementary Information sections VI and VII (Extended Data
Figs 8, 9). Cl is close to the optimal q%"' = 0.192(9) obtained with EO in
Supplementary Information section IV. Note that EO can estimate the
extrapolated optimal value of g, but it cannot provide the optimal

Supplementary Information section VA for minimizing G(q) # 0). By
increasing the radius € of the ball we obtain better and better approx-
imations of the optimal exact solution as € — o (for finite networks, €
does not exceed the network diameter).

The collective influence Cl, for € = 1 has a rich topological content,
and consequently tells us more about the role played by nodes in the
network than the non-interacting high-degree hub-removal strategy at
€ =0, Cl. The augmented information comes from the sum in the
right hand side of equation (5), which is absent in the naive high-
degree rank. This sum contains the contribution of the nodes living
on the surface of the ball surrounding the central vertex i, each node
weighted by the factor k; — 1. This means that a node placed at the
centre of a corona irradiating many links—the structure hierarchically
emerging at different € levels as seen in Fig. le—can have a very large
collective influence, even if it has a moderate or low degree. Such ‘weak
nodes’ can outrank nodes with larger degree that occupy mediocre
peripheral locations in the network. The commonly used word ‘weak’
in this context sounds particularly paradoxical. It is, indeed, usually
used as a synonym for a low-degree node with an additional bridging
property, which has resisted a quantitative formulation. We provide
this definition through equation (5), according to which weak nodes
are, de facto, quite strong. Paraphrasing Granovetter’s conundrum®,
equation (5) quantifies the “strength of weak nodes”.

The CI-algorithm scales as ~ O(N log N) by removing a finite frac-
tion of nodes at each step (Supplementary Information section VB).
This high scalability allows us to find top influencers in current big-data
social media and the minimal set of people to immunize in large-scale
populations at the country level. The applications are investigated next.

Figure 2a shows the optimal threshold g, for a random Erd6s-Rényi
(ER) network® (marked by the vertical line) obtained by extrapolating
the EO solution to N— o and € — o (Supplementary Information
section IV). In the same figure we compare the optimal threshold against
the heuristic centrality measures: high-degree (HD)’, high-degree
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configuration for large systems. Inset, g. (obtained at the peak of the second-
largest cluster) for the three best methods versus (k). b, G(g) for a SF network
with degree exponent y = 3, maximum degree ko = 10°, minimum degree
kumin = 2 and N= 2 X 10° (error bars are s.e.m. over 20 realizations). Inset, qc
versus 7. The continuous blue line is the HD analytical result computed in
Supplementary Information section IIG (Extended Data Fig. 1b). ¢, Example of
SF network with y = 3 after the removal of 15% of nodes, using the three
methods HD, HDA and CI. CI produces a much reduced giant component G
(red nodes).

adaptive (HDA), PageRank (PR)’, closeness centrality (CC)°, eigenvec-
tor centrality (EC)®, and k-core” (see Supplementary Information sec-
tion I for definitions). Supplementary Information sections VI and VII
show the comparison with the remaining heuristics*'* and the Belief
Propagation method of ref. 14, respectively, which have worse compu-
tational complexity (and optimality), and cannot be applied to the net-
work sizes used here. Remarkably, at the optimal value g. predicted by
our theory, the best among the heuristic methods (HDA, PR and HD)
still predict a giant component ~50-60% of the whole original network.
Furthermore, the influencer threshold predicted by CI approximates
very well the optimal one, and, notably, CI outperforms the other strat-
egies. Figure 2b compares Cl in scale-free (SF) networks® against the best
heuristic methods, that is, HDA and HD. In all cases, CI produces a
smaller threshold and a smaller giant component (Fig. 2c).

As an example of an information spreading network, we consider
the web of Twitter users (Supplementary Information section VIII'?).
Figure 3a shows the giant component of Twitter when a fraction g of its
influencers is removed following CI. It is surprising that a lot of Twitter
users with a large number of contacts have a mild influence on the
network. This is witnessed by the fact that, when CI (at € = 5) predictsa
zero giant component (and so it exhausts the number of optimal influ-
encers), the scalable heuristic ranks (HD, HDA, PR and k-core) still
give a substantial giant component of the order of 30-70% of the entire
network. These heuristics also, inevitably, find a remarkably large num-
ber of (fake) influencers, which is at least 50% larger than that predicted
by CI (Fig. 3b and Supplementary Information section VIII). One cause
for the poor performance of the high-degree-based ranks is that most of
the hubs are clustered, which gives a mediocre importance to their
contacts. As a consequence, hubs are outranked by nodes with lower
degree surrounded by coronas of hubs (shown in detail in Fig. 3¢), that
is, the weak nodes predicted by the theory (Fig. 1e).

Finally, we simulate an immunization scheme on a personal contact
network built from the phone calls performed by 14 million people in
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Figure 3 | Performance of CI in large-scale real social networks. a, Giant
component G(q) of Twitter users' (N = 469,013) computed using CI, HDA,
PR, HD and k-core strategies (other heuristics have prohibitive running times
for this system size). b, Percentage of fake influencers or false positives

(PFI, equation (120) in Supplementary Information) in Twitter as a function of
> defined as the percentage of non-optimal influencers identified by the HD
algorithm in comparison with CI. Below qCCI, PFI reaches as much as ~40%,
indicating the failure of HD in optimally finding the top influencers. Indeed, to
obtain G = 0, HD has to remove a much larger number of fake influencers,
which at g''P reaches PFI =~ 48%. ¢, An example of the many weak nodes found
in Twitter. These crucial influencers were missed by all heuristic strategies.

d, G(q) for a social network of 1.4 X 107 mobile phone users in Mexico
representing an example of big data to test the scalability and performance of
the algorithm in real networks. CI immunizes this social network using half
a million fewer people than the best heuristic strategy (HDA), saving ~35%
of the vaccine stockpile.

Mexico (Supplementary Information section IX). Figure 3d shows that
our method saves a large number of vaccines or, equivalently, finds the
smallest possible set of people to quarantine; our method therefore also
outranks the scalable heuristics in large real networks. Thus, while the
mapping of the influencer identification problem onto optimal per-
colation is strictly valid for locally tree-like random networks, our
results may apply also to real loopy networks, provided the density
of loops is not excessively large.

Our solution to the optimal influence problem shows its importance
in that it helps to unveil hitherto hidden relations between people, as
witnessed by the weak-node effect. This, in turn, is the by-product of a
broader notion of influence, lifted from the individual non-interacting
point of view®'>*?° to the collective sphere: influence is an emergent
property of collectivity, and top influencers arise from the optimiza-
tion of the complex interactions they stipulate.

Online Content Methods, along with any additional Extended Data display items
and Source Data, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Extended Data Figure 1 | High-degree (HD) threshold. a, HD influence
threshold g, as a function of the degree distribution exponent y of scale-free
networks in the ensemble with kpa = mNY? ™D and N— . The curves refer
to different values of the minimum degree m: 1 (red), 2 (blue), 3 (black).

The fragility of SF networks (small g.) is notable for m = 1 (the case calculated
in ref. 10). In this case (m = 1), the network contains many leaves, and reduces
to a star at y = 2, which is trivially destroyed by removing the only single
hub, explaining the general fragility in this case. Furthermore, in this same case,
the network becomes a collection of dimers with k = 1 when y— oo, which is
still trivially fragile. This also explains why g.— 0 for y = 4. Therefore, the
fragility in the case m = 1 has its roots in these two limiting trivial cases.
Removing the leaves (m = 2) results in a 2-core, which is already more robust.

2.4

Y

For the 3-core m = 3, q. = 0.4-0.5 provides a quite robust network, and has the
expected asymptotic limit to a non-zero g, of a random regular graph with
k=3asy— o, g.— (k — 2)/(k — 1) = 0.5. Thus, SF networks become
robust in these more realistic cases, and the search for other attack strategies
becomes even more important. b, HD influence threshold g, as a function of the
degree distribution exponent of scale-free networks with minimum degree

m = 2 in the ensemble where k., is fixed and does not scale with N. The
curves refer to different values of the cut-off ky,,: 107 (red), 10° (green), 10°
(blue), 108 (magenta), and ki, = o (black), and show that for a typical k.
degree of 103, for instance in social networks, the network is fairly robust with
q.= 0.2 for all y. The curve with m =2 and k., = 10%is replotted in the inset
of Fig. 2b.
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Extended Data Figure 2 | Replica Symmetry (RS) estimation of the and then averaged over 40 realizations of the network (error bars are s.e.m.).
maximum eigenvalue. Main panel, the eigenvalue ilfs (q), equation (92) in Inset, comparison between the RS cavity method and EO (extremal
Supplementary Information for the two-body interaction £ = 1, obtained by = optimization) for an ER graph of (k) = 3.5 and N = 128. The curves are
minimizing the energy function £(s) with the RS cavity method. The curve was  averaged over 200 realizations (error bars are s.e.m.).

computed on an ER graph of N= 10,000 nodes and average degree (k) = 3.5
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Extended Data Figure 3 | EO estimation of the maximum eigenvalue. each panel refer to different sizes of ER networks with average connectivity
Eigenvalue /(q) obtained by minimizing the energy function £(n) with TEO (k) = 3.5. Each curve is an average over 200 instances (error bars are s.e.m.).
(t-extremal optimization), plotted as a function of the fraction of removed The value g. where A(g.) = 1 is the threshold for a particular N and many-body

nodes gq. The panels are for different orders of the interactions. The curves in  interaction.
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Extended Data Figure 4 | Estimation of optimal threshold g°"* with EO.

a, Critical threshold g, as a function of the system size N, obtained with EO from
Extended Data Fig. 3, of ER networks with (k) = 3.5 and varying size. The
curves refer to different orders of the many-body interactions. The data show a
linear behaviour as a function of N~ 2, typical of spin glasses, for each many-

1/p

body interaction p. The extrapolated value gZ° (p) is obtained at the y intercept.
b, Thermodynamic critical threshold g¢° (p) as a function of the order of the
interactions p from a. The data scale linearly with 1/p. From the y intercept
of the linear fit we obtain the thermodynamic limit of the infinite-body
optimal value g2' = g2 (p — 00) =0.192(9).

C
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Extended Data Figure 5 | Comparison of the CI algorithm for different
radii € of the Ball({). Weuse ¢ = 1,2, 3,4, 5, on a ER graph with average degree
(ky=3.5and N = 10° (the average is taken over 20 realizations of the network,
error bars are s.e.m.). For € = 3 the performance is already practically
indistinguishable from € = 4, 5. The stability analysis we developed to
minimize q. is strictly valid only when G = 0, since the largest eigenvalue of the

0.1

015 0.2

q

modified NB matrix controls the stability of the solution G = 0, and not the
stability of the solution G > 0. In the region where G > 0 we use a simple
and fast procedure to minimize G explained in Supplementary Information
section VA. This explains why there is a small dependence on having a slightly
larger G for larger ¢, when G > 0 in the region g~ 0.15.
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Extended Data Figure 6 | Illustration of the algorithm used to minimize in the network. For example, the red node has c(red) = 2, while the blue one has
G(q) for ¢ < q.. Starting from the completely fragmented network at =g,  c(blue) = 3. The node with the smallest (i) is reinserted in the network: in this
the Ng. influencers are reinserted with their original degree and connected case the red node. Then the c(i)s are recalculated and the new node with the
to their original neighbours with the following criterion: each node is assigned  smallest c(i) is found and reinserted. These steps are repeated until all the
and index c(i) given by the number of clusters it would join if it were reinserted ~ removed nodes are reinserted in the network.
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Extended Data Figure 7 | Test of the decimation fraction. Giant component G as a function of the fraction of removed nodes g using CI, for an ER network of
N = 10° nodes and average degree (k) = 3.5. The profiles of the curves are drawn for different percentages of nodes fixed at each step of the decimation algorithm.
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Extended Data Figure 8 \ Comparison of the performance of CI, BC and EGP in destroying G. We also include HD, HDA, EC, CC, k-core and PR. We use a
scale-free (SF) network with degree exponent y = 2.5, average degree (k) = 4.68, and N = 10*. We use the same parameters as in ref. 11.
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Extended Data Figure 9 | Comparison with BP for a network
immunization. a, Fraction of infected nodes f as a function of the fraction of
immunized nodes q in the susceptible-infected-removed (SIR) model from the
BP solution. We use an ER random graph of N = 200 nodes and average degree
(k) = 3.5. The fraction of initially infected nodes is p = 0.1 and the inverse
temperature f§ = 3.0. The profiles are drawn for different values of the
transmission probability w: 0.4 (red curve), 0.5 (green), 0.6 (blue), 0.7
(magenta). Also shown are the results of the fixed density BP algorithm
(open circles). b, Chemical potential i as a function of the immunized nodes
q from BP. We use an ER random graph of N = 200 nodes and average degree
(k) = 3.5. The fraction of the initially infected nodes is p = 0.1 and the

inverse temperature 5 = 3.0. The profiles are drawn for different values of
the transmission probability w: 0.4 (red curve), 0.5 (green), 0.6 (blue), 0.7
(magenta). Also shown are the results of the fixed density BP algorithm
(open circles) for the region where the chemical potential is non-convex.

¢, Comparison between the giant components obtained with CI, HDA, HD and
BP. We use an ER network of N = 10° and (k) = 3.5. We also show the solution
of CI from Fig. 2a for N= 10°. We find in order of performance: CI, HDA,
BP and HD. (The average is taken over 20 realizations of the network, error bars
are s.e.m.) d, Comparison between the giant components obtained with CI,
HDA, HD and BPD. We use a SF network with degree exponent y = 3.0,
minimum degree K, = 2, and N = 10* nodes.
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Extended Data Figure 10 | Fraction of infected nodes f{q) as a function of =~ We compare CI, HDA and BP. All strategies give similar performance, owing
the fraction of immunized nodes g in SIR from BP. We use the following  to the large value of the initial infection p, which washes out the optimization
parameters: initial fraction of infected people p = 0.1, and transmission performed by any sensible strategy, in agreement with the results shown in
probability w = 0.5. We use an ER network of N = 10> nodes and (k) = 3.5. figure 12a of ref. 14.
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