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Social neuroscience has called for new experimental paradigms
aimed toward real-time interactions. A distinctive feature of in-
teractions is mutual information exchange: One member of a pair
changes in response to the other while simultaneously producing
actions that alter the other. Combining mathematical and neuro-
physiological methods, we introduce a paradigm called the human
dynamic clamp (HDC), to directly manipulate the interaction or
coupling between a human and a surrogate constructed to behave
like a human. Inspired by the dynamic clamp used so productively
in cellular neuroscience, the HDC allows a person to interact in real
time with a virtual partner itself driven by well-established models
of coordination dynamics. People coordinate hand movements with
the visually observed movements of a virtual hand, the parameters
of which depend on input from the subject’s own movements. We
demonstrate that HDC can be extended to cover a broad repertoire
of human behavior, including rhythmic and discrete movements,
adaptation to changes of pacing, and behavioral skill learning as
specified by a virtual “teacher.” We propose HDC as a general par-
adigm, best implemented when empirically verified theoretical or
mathematical models have been developed in a particular scientific
field. The HDC paradigm is powerful because it provides an oppor-
tunity to explore parameter ranges and perturbations that are not
easily accessible in ordinary human interactions. The HDC not only
enables to test the veracity of theoretical models, it also illuminates
features that are not always apparent in real-time human social
interactions and the brain correlates thereof.

human–machine interface | artificial agent |
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Reciprocally coupled complex systems in biology and psychol-
ogy are notoriously difficult to study. Over the course of the

last three decades, understanding how real neurons work in-
dividually and together has grown significantly in large part due
to the so-called dynamic clamp paradigm (see ref. 1 for a review).
The initial idea was to combine a standard electrophysiological
setup with a computer interface, and then control in real time the
current injected into a neuron as a function of its membrane
potential measured via an intracellular electrode (2). The original
dynamic clamp used tried and tested electrophysiological models
such as the Hodgkin–Huxley equations (3) to explore parametri-
cally how neurons behave. The latter, considered one of the most
significant accomplishments in biophysics in the 20th century,
provides a quantitative description of the electric potential across
a cell membrane. The interaction between the real neuron and its
artificial counterpart allows simulating artificial membrane or
synaptic conductance (4, 5), chemical or electronic inputs (6, 7),
and even connections with other neurons (8). Because the dynamic
clamp falls midway between computational modeling and experi-
mental electrophysiology, it affords the same degree of precision
and freedom at the modeling level, while keeping the complexity
of interaction with real neurons intact.
Might a similar approach be scaled up or down (as the case

may be) to other levels of description? For example, were a human
to interact with a model constructed to behave like him- or herself,
might this tell us something about human beings and how they

work together? Social neuroscience has increasingly emphasized
the need for new experimental paradigms, specifically for the
case of real-time social interactions (9). Were it available, a human
dynamic clamp (HDC) would provide an opportunity to explore
parameter ranges and perturbations that are beyond the reach
of traditional experimental designs involving live interactions. How-
ever, scaling the paradigm from neurons and neural ensembles to
humanbeings and humanbrains in a principled fashion is nontrivial.
A potential starting point is to ground the design of an HDC in the
empirically based theoreticalmodels of coordination dynamics (10).
In what follows, we will describe the HDC for four classes of

behavior. Basically, the HDC models the interactions between a
human and a virtual partner (VP) in the language of informa-
tionally coupled, nonlinear dynamical systems. The movements
of the human enter the equations of motion associated with
a specific model. This produces the dynamics of the VP that are
displayed on a video screen. To complete the reciprocal coupling
between the human and VP, the subject sees the motion of the
VP. In a first version, the rhythmic movements of the subject enter
the equations of motion of the Haken–Kelso–Bunz (HKB) model
(11), considered one of the most extensively tested quantitative
models of human motor behavior (12–14). Then, we expand the
behavioral repertoire of the VP through the excitator model (14–
16), which describes both rhythmic and discrete movement
generation. In a further elaboration, adaptive behavior is in-
troduced through changing parameter dynamics (17), illustrated
here by modifying the intrinsic frequency of the VP (18). Finally,
to study how a VP may adopt a directed behavior and hence play
the role of a “teacher,” we use an adaptation of the empirically
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verified Schöner–Kelso model of behavioral pattern change (ref.
19, but see also refs. 20–22).
The validity of all four realizations of the HDC is established

by showing empirical results that confirm the existence of a dy-
namic coordination between humans and VPs, akin to the con-
cept of generalized synchronization in physics (23). Our results
suggest that if adequate models of behavior exist for different
tasks and functions, and if a medium for two-way interaction and
information exchange is available, a deeper understanding of
emergent forms of social coordination may ensue. Crucially, dem-
onstrating dynamical coordination between human and VP allows
one to infer that both the coupling between the human and VP and
the internal dynamics of the VP are appropriate models for the
human observer. This allows one to explore a range of parameters
and dynamical architectures that support meaningful interaction
from a human perspective.

Methods
Subjects. Ten naïve subjects (three female and seven male, 18–60 y old) provided
written informed consent and participated in the interactions with the HDC.
Procedures were approved by the Internal Review Board at Florida Atlantic
University and conformed to the principles expressed in the Declaration of
Helsinki. All subjects were right handed and had normal or corrected-to-normal
vision. None of them reported a history of neurological or psychiatric disorder.

Apparatus. Human participants were seated in front of a computer monitor
placed in a sound-isolated room (Fig. 1). Their left hand rested on a table and
the right index finger was placed in a manipulandum that rotated freely in
the transverse (horizontal) plane about a fixed axis aligned with the meta-
carpophalangeal joint (Fig. 1, Lower Left). The movement of the finger (angular
displacement), transduced by a DC potentiometer, was digitized with a
National Instruments analog-to-digital converter at a sampling rate of 500 Hz.

Software. Movement data (red “y” in Fig. 1) were fed into a real-time C++
multithread software program (Fig. 1, Right). Velocity of human movement
(red _y in Fig. 1) was numerically computed using a three-point differentiation
algorithm and digitized along with the position data. All of the differential
equations were integrated using a Runge–Kutta fourth-order algorithm
at 500 Hz, leading to a maximum delay of 2 ms between acquisition and
computation of the model output. Model position (blue x in Fig. 1) was used
to select one of 119 position-indexed images, which were displayed on the
screen (Fig. 1, Upper Left). The screen animation was refreshed at 120 Hz
during the experiment and looked just like a normal video of a moving hand.

Models Implemented. The HDCmodels the interactions between a subject and
a VP as a bidirectionally coupled dynamical system. Any implementation of
the HDC thus contains two main parts: the intrinsic dynamics of the model
and its coupling with the human. The HDC implemented here covers con-
tinuous (rhythmic), discrete, adaptive, and directed behavior (see Table 1 for
a summary). It is worth noting that each model has a strong empirical basis
and that successive models are mathematical generalizations of their ante-
cedents, not simply independently formalized functional modules.

Model 1: Rhythmic Behavior. The first version of the HDC embeds one of the
most studied and quantitatively tested models of human movement
behavior—the HKB model—into the context of real-time human social in-
teraction (24). The original form of the HKB equations describes and predicts
the coordination dynamics of two rhythmically moving components and their
functional interaction (11). Many studies have shown that the relative phase
ϕ is a relevant collective variable that captures the coordination between
two rhythmically moving components. The HKB model provides the equations
of motion for both the relative phase and the nonlinear interaction between
the components (25). At the collective level, the HKB model reads as

_ϕ=−a sinðϕÞ− 2b sinð2ϕÞ, [1]

where ϕ is the relative phase between the human and the VP, the dot sig-
nifies the derivative with respect to time, and a and b are parameters whose
main effects are to control the coupling strength and attractor landscape
(for more details, see ref. 26). The VP is endowed with a behavior of its own
and, by means of coupling, with the further capacity to coordinate move-
ment with a human (Fig. 1).

At the component level, the relevant state variables are no longer the relative
phases but individual finger position and velocity. Hence, the HDC dynamics is

x
::
+
�
αx2 + β _x2 − γ

�
_x +ω2x =

�
A+Bðx − μyÞ2

�
ð _x − μ _yÞ, [2]

where x and y represent respectively VP and human finger position, the dots
the derivatives, α, β, and γ are control parameters such as stiffness and
damping associated with empirically measured properties of human move-
ment (e.g., refs. 27 and 28), ω is the movement frequency, A and B are
coupling parameters between the VP and the human, and μ is a constant
fixed to either +1 or −1, indicating the preference or goal of the VP for
inphase or antiphase coordination (see Fig. 3).

Model 2: Discrete Behavior. Experiments show that discrete and rhythmic
movements can be distinguished based on their phase flow topology (13, 14).
Both kinds of movements can be modeled with a single theoretical model,
the so-called excitator (15). The excitator defines a universal class of 2D
dynamical systems able to exhibit limit cycles for rhythmic movement, and
fixed-point dynamics for posture and discrete movements. Not only does the
excitator offer a parsimonious way to explain discrete and continuous
behaviors with the same dynamical system, it also provides novel predictions
regarding phenomena such as false starts that have been confirmed ex-
perimentally (16).

Excitator behavior is constrained by three topological characteristics of the
phase flow: the boundedness of the trajectory; the existence of a separatrix
marking the boundary between two separate regimes; and the existence of
attractors, stable fixed point(s) for monostable and bistable discrete move-
ments, and a limit cycle regime for rhythmic movements. Implementing the
excitator in the HDC, the equations read

�
_x1 =ωðx1 + x2 −g1ðx1ÞÞτ
_x2 =−ωðx1 − a+g2ðx1,x2Þ− IÞ=τ, [3]

with

g1ðx1Þ= 1
3
x31 and g2ðx1,x2Þ=−bx2, [4]

where x1 and x2 are the variables with their derivatives (x1 and x2 relating to
fast and slow dynamics, respectively), ω is the frequency of the VP, a and b
control the location and angle of the separatrix, I represents an input, and
τ is a time constant. Notice that the choice of the functions g1 and g2, although
not fixed, must nevertheless guarantee the boundedness of the system so that it
belongs to the universal class of self-excitable systems.

Fig. 1. Schematic of the HDC. Human subjects coordinate finger move-
ments with a VP displayed on a computer screen. The subject’s finger posi-
tion and velocity (state variables) are used as input to the coupling term of
the model system (Table 1). The instantaneous position and velocity of the
animated finger movements of the VP are determined from a real-time
numerical simulation of the model equations that drive the display. The
coupling is bidirectional: The subject is visually coupled to the model via
the display, and the subject’s own movements (via the coupling) affect
the display. Control parameters can be fixed, e.g., as in model 1, or change
adaptively in time, as in model 3.
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The two first-order equations for x1 and x2 (Eq. 3) are converted to a unidi-
mensional second-order equation by eliminating x2 to give a similar form to Eq. 2:

x
::
+ τω

�
δg1

δx
− 1

�
+ω2

�
x − a−g2

�
x,

_x
τω

− x +g1ðxÞ− I
��

=
�
A+Bðx − yÞ2

�
ð _x − _yÞ:

[5]

To incorporate the excitator model into the HDC, we substitute the g1 and g2

functions and obtain

x
::
+ τω

�
x2 + x4 − 1Þ+ω2

�
x−a−b

�
_x

τω
− x +

1
3
x3 +

1
5
x5 − I

��
=
�
A+Bðx − yÞ2

�
ð _x− _yÞ:

[6]

One can immediately recognize on the right-hand side of Eq. 6 the nonlinear
coupling already used in the HKB model (where y refers to the human be-
havior). This coupling still holds here and causes either convergence or di-
vergence of the trajectories in the phase space. Because trajectories are
bounded, constraints lead to inphase or antiphase modes of coordination,
respectively (for further details, see ref. 15).

Model 3: Adaptive Behavior.Adaptation relies onparameter dynamics according
to the scale of observation (17). Implementing frequency adaptation in the
HDC thus appears to be a good first step to investigate the parameter dy-
namics necessary to more fully understand human adaptive behavior. Differ-
ent strategies for modeling frequency adaptation exist in the literature. For
example, in currently popular Bayesian approaches, frequency adaptation is
error based and relies on reinforcement learning (e.g., ref. 29). In predictive
coding, the adaptation of model parameters is associated with Hebbian and
synaptic plasticity (30). Other bottom–up strategies—mostly along the lines of
connectionist models—have been developed in the fields of signal processing
(31) and robotics (32). Here we follow the strategy of coordination dynamics.
Such a dynamical approach has accounted for many phenomena such as fre-
quency adaptation in fireflies (33) and tempo adaptation in musical rhythms
(34). A nice aspect of the resulting HDC is that frequency adaptation emerges
spontaneously from the interaction of human and VP.

Following Righetti et al. (18, 35), we introduce frequency adaptation into
the HDC by transforming the parameter ω into a new state variable, with its
own time-dependent dynamics:

_x1 = fx1 ðx1,x2,ωÞ+ FðtÞ

_x2 = fx2 ðx1,x2,ωÞ
and _ω= ν

�
ω0 −ω

�
± κFðtÞ x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 + x22

q ,

8><
>: [7]

where κ is the coupling strength, ðx1,x2Þ are the state variables of the os-
cillator in Cartesian coordinates and FðtÞ is the time periodic perturbation
caused by the human participant. We also introduce ω0 as the preferred
frequency of the HDC and a relaxation parameter ν. The sign in front of κ
depends on the rotation direction in the 2D phase space of the HDC ðx1,x2Þ.
The addition of frequency adaptation to the HDC is compatible with both
the HKB and excitator models.

Model 4: Directed Behavior. Behavior is often directed toward a specific goal.
In the theory of coordination dynamics, to modify or change the system’s
behavior, new information—say a task to be learned or an intention to
change behavior—is expressed in terms of parameters acting on the system-
relevant variables and their dynamics. The benefit of identifying the latter is
that one knows what to modify to produce behavioral change (36). Both
empirical and theoretical work shows that intentional forcing is capable of
parameterizing the dynamics, e.g., by destabilizing/stabilizing a target pat-
tern of coordination (e.g., refs. 19, 20, 37, and 38) and that neurophysio-
logically the basal ganglia play a key role (22). Following Schöner and Kelso
(19) we introduce a perturbation of the vector field of the dynamics—an
intentional forcing term—that attracts the system toward a desired coordi-
nation pattern. This effectively turns the HDC into a virtual teacher. A key
conceptual aspect is that intentional information acts in the same space as
the collective variables that define the coordination patterns themselves
(39). Thus, the HDC is now composed of three components (Eq. 8): the
original nonlinear oscillators and nonlinear coupling of the HKB model
plus the Schöner–Kelso intentional forcing term, which specifies a required
relative phase,

_ϕ= a sinðϕÞ+ 2b sinð2ϕÞ+ c sinðψ −ϕÞ, [8]

where ϕ is the relative phase, ψ is the intended or required relative phase
which can take on any value between −π and +π, and c is the strength of the
intentional coupling.

The intentional coupling term Cint is then adapted to the unidimensional
component equation form (see SI Appendix for details):

Cint =−cðcosðψÞð _x − _yÞ+ sinðψÞωyÞ: [9]

The higher the absolute value of Cint, the stronger the intention, i.e., the
stronger the attraction toward the relative phase required by the VP. The
benefit of this formulation is that the human can be guided to coordinate
with the VP at any arbitrary relative phase (including those foreign to his or
her behavioral repertoire), thereby endowing the HDC with teaching or
training capabilities.

Table 1. Overview of the equations and key parameters that govern the four theoretical models embedded in the HDC

Equation(s): internal dynamics = coupling

Behavior Model Internal dynamics Coupling* Key parameters

Rhythmic
coordination

Original version of
HKB (11)

x
::
+ ðαx2 + β _x2 − γÞ _x +ω2x ðA+Bðx − μyÞ2Þð _x − μ _yÞ Intrinsic frequency (ω),

Van der Pol (α), Rayleigh (β),
damping (γ), and coupling
(A and B)

Rhythmic and
discrete
movement

Excitator-adapted
Jirsa–Kelso (15)

8<
:

_x1 =ωðx1 + x2 −g1ðx1ÞÞτ

_x2 =
−ωðx1 − a+g2ðx1,x2Þ− IÞ

τ

with g1ðx1Þ= 1
3 x

3
1 and

g2ðx1,x2Þ=−bx2

Same as above Angle and location of the
nullclines (a and b) and time
constant (τ)

Frequency
adaptation

Dynamic Hebbian
learning-adapted
Righetti et al. (18)

Either of the above _ω= νðω0 −ωÞω ± κFðtÞ x2ffiffiffiffiffiffiffiffiffiffiffi
x21 + x22

p Strength of the adaptation (κ),
preferred frequency (ω0),
and strength of the
preference (ν)

Directed
coordination

Virtual teacher-adapted
Schöner–Kelso (19)†

Either of the above −cðcosðψÞð _x − _yÞ+ sinðψÞωyÞ Intended relative phase (ψ )
and strength of the
intention (c)

See Models Implemented. Note that starting with HKB (top row) each model builds upon the one before it thereby developing an increasingly fuller
picture of dynamic coordination.
*x and _x correspond to the state variables of the VP, and y and _y are the equivalent variables for the human participant.
†See SI Appendix for details.
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Results
Because the main purpose of the research is to establish HDC
as a proof of concept, only a brief illustration of some of the
main experimentally observed phenomena is presented here.
Nonetheless, a number of new effects not previously observed
in studies of live interactions are reported that demonstrate the
potential of the approach. Below, HDCs 1–4 refer to the entire
interaction between the human and models 1–4 of the VP.

HDC 1: Rhythmic Behavior. In the first version of the HDC, the
subjects’ task was to coordinate inphase with the VP’s motion
displayed on the screen. Participants were instructed to maintain a
smooth and continuous rhythmic movement with their right index
finger (flexion–extension) and to avoid stopping movement at any
time. On the VP’s side, the parameter μ was set to −1 (Eq. 2),
inducing a preference for antiphase coordination, and thus a
goal opposite to the human’s. This competitive context was in-
tended to increase the likelihood of emergent patterns of social
behavior. One-way coupled conditions were used as controls
(Fig. 2, Top Left and Top Right).
Experiments using the HKB model as a VP (reciprocal coupling)

yielded a number of interesting forms of social coordination
that are illustrated in the central portions of Fig. 2. The three
colored areas in Fig. 2 delineate modes of coordination encoun-
tered during the experiment: fully stable coordination (both
in- and antiphase), switching from one mode to the other, and
phase wrapping (no coordination). Many of these coordination

patterns are known from modeling studies but have not pre-
viously been observed in studies of interpersonal coordination.
For example, because the VP and human participants did not
necessarily produce the same frequency, their interaction revealed
behaviors such as phase wrapping and metastability (intermittent
dwells near stable in- and antiphase states)—predicted by the
extended version of HKB (40, 41). Also clear in Fig. 2, is that
unidirectional and bidirectional couplings differentially affected
the stability of coordination, thereby extending traditional social
perception paradigms—which are typically unidirectional (42)—
to real-time social interactions.
Finally, human participants were observed to spontaneously

invent behavioral strategies to maintain inphase coordination
with the VP (Fig. 3, but see also ref. 24). The normal behavior of
the HKB model is to produce transitions from the less stable
antiphase pattern to the more stable inphase pattern. Here,
however, the opposite occurs. Due to the drop in VP amplitude
the human spontaneously switches to antiphase (the goal of the
VP) to effectively increase the amplitude of the VP. Further
computational simulations found that these emergent strate-
gies were fully consistent with the HKB model, arising from
previously unexplored aspects of its dynamics. On debriefing
after the experiment (and sometimes spontaneously during the
experiment) subjects reported that the VP was “messing” with
them, suggesting agency attribution to the VP. Follow-up behav-
ioral studies (43) showed that the coupling strength between one’s
own movements (i.e., self) and those of the VP (i.e., other)—which

Fig. 2. Patterns of coordination observed with a HDC in which the VP is governed by the HKB model. White boxes show samples of the relative phase between
VP and human movements. Behavioral outcomes (patterns of relative phase between human and VP) are organized vertically according to the VP’s movement
frequency, and horizontally according to different conditions of unidirectional (sides) and bidirectional (center) or reciprocal coupling (see HDC 1: Rhythmic
Behavior for further details).
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is directly manipulable in the HDC—is a key factor underlying
accurate agency attribution (see also refs. 44 and 45).

HDC 2: Discrete Behavior. Interaction between a human subject and
a VP governed by the excitator equations leads to three main
regimes (Fig. 4): monostable (rapid ballistic movements from a
steady-state posture), bistable (discrete movements from one state
to another), and limit cycle (continuous rhythmic movements).
Monostable coordination of human and VP is shown in Fig. 4A.
Between periods of rest with the finger extended, the human
subject performs brisk discrete flexion movements at will. Note
how the VP coordinates and follows these discrete events. Fig.
4B shows the corresponding phase flow (in black). The null-
clines (green and magenta) have a single intersection, which
creates a unique fixed-point attractor: The phase flow is organized
around this attractive state. Bistable coordination of human and
VP is shown in Fig. 4C. The human switches at will between
flexion and extension; the VP again coordinates. Note in Fig. 4D
that the nullclines now intersect thrice, creating two fixed-point
attractors, supporting the bistable regime. Coupled limit cycle
behavior of human and VP is shown in Fig. 4E. Notice how, after
an initial transient period, the continuous movements of both
partners become coordinated. In Fig. 4F, the attractor at the in-
tersection of the nullclines is unstable repelling the flow away from
the origin onto a stable attracting limit cycle. The VP qua excitator
dynamics follows the limit cycle around this unstable fixed point as
seen by the dense accretion of the phase flow (in black).
The Jirsa–Kelso equations also contain a term I, which is

nonautonomous in a mathematical sense and allows modifi-
cation of the flow in the phase space according to an external
input. When human movement is fed in as a variable, the HDC
dynamics can be continuously modulated, leading to spontaneous
transitions between the three main regimes (Fig. 5). Notice that
the VP does not require any external intervention to tune its
parameters at the (unpredictable) onset of the transition: It is
able to switch spontaneously between discrete and continuous
behavior just like the human participant. Thus, embedding the
excitator as a VP into the HDC enables the behavioral repertoire
of the dyad to be expanded and studied parametrically using a
single dynamical scheme.

HDC 3: Adaptive Behavior. Fig. 6 illustrates the interaction between
a human participant and an adaptive VP (with its internal dynamics
here based on the excitator; Table 1). In Fig. 6A, the human is
initially entrained to an auditory metronome at 1 Hz while looking

at a blank screen with a fixation cross. At time t = 0, the VP
appears on the screen and the human is asked to accelerate his/
her pace and to stop at will. Notice (i) how the VP, after an initial
lag, adapts its pace and enters into inphase coordination with the
human; and (ii) that the VP successfully adapts to large changes in
human movement frequency. Fig. 6B displays the dynamics of the
movement frequency for both human and VPs (red and blue dots,
respectively) as well as the parameter dynamics of the HDC
(dashed blue line). Note how the internal frequency of the HDC
is updated at each cycle and, in the absence of human rhythmic
movement, goes back to the preferred frequency ω0. As a result
of phase coordination, the instantaneous frequency at the be-
havioral level is not required to match the internal frequency.
It is worth noting that any constant in the equations of a given
model can be turned into a variable, giving rise to parameter
dynamics. This expands the behavioral model while preserving
the original model (i.e., with fixed parameters) when the pa-
rameter dynamics is kept constant (e.g., in Eq. 7, with κ = υ = 0).
Adding a third dimension to the HDC leads to a less predictable
dynamics that may be associated with the chaotic regimes that
are typical of 3D dynamical systems (46–48).

HDC 4: Directed Behavior. Fig. 7A shows the movement trajectory
of a human and a VP qua the virtual teacher—HKB with the
intentional term of Eq. 9. The relative phase ψ specified by the
virtual teacher is π/2: The strength of the intention c, initially
fixed to 1 falls to 0 after 5 s. Notice that the coordination pattern
is initially sustained according to the intention of the virtual teacher,
despite its intrinsic instability in most naïve subjects (49). In-
terestingly, when intentional forcing is turned off, the coordination
pattern changes but does not return completely to inphase. This
finding suggests that specifying particular patterns of coordination
may lead to persistent effects in human participants. Moreover, it
appears that such new behavioral patterns can be appended to the
preexisting repertoire of the human as a result of interaction with
a virtual teacher (see also refs. 35, 49, and 50). As illustrated in Fig.
7B, the HDC allows one to specify particular patterns of co-
ordination for the human to learn, hence opening up a principled
approach to computer-assisted learning and rehabilitation.

Discussion
We have shown how an electrophysiological tool, the dynamic
clamp, can be scaled up from neurons to people, giving birth to
the paradigm of the HDC. In this paradigm a human interacts in
real time with a computationally implemented theoretical model

Fig. 3. The HDC in which the VP is governed by the HKB model (11). (A) Time series of interaction between VP (blue) and human movement (red). The
parameters of the VP are set to coordinate antiphase, whereas the human is instructed to coordinate inphase. The goals of the VP and the human are thus
placed in conflict. (B) Relative phase (ϕ) plot corresponding to A, showing inphase (green) to antiphase (orange) transitions between VP and human.
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of him- or herself called a VP (24). Initial work demonstrated the
feasibility of an HDC for coordination of rhythmic movements
through the embedding of the HKB model. Experiments showed
that the range of social interactions is much richer as a result
of bidirectional coupling. Modifying human action in real time,
even as the human is modifying the VP uncovered unexpected
behaviors—the theoretical significance of which became clear
only after the fact. Subsequently, the HDC was extended beyond
the HKB model to explore mutual interaction in a variety of
behavioral contexts. We developed a methodology for expanding
the behavioral repertoire of the VP to include discrete and rhythmic
movements, frequency adaptation, and intentional or environmen-
tal forcing of specific coordination patterns (Table 1). This process
of generalization and resulting findings indicates how the HDC
may be exploited as a general paradigm to investigate social in-

teractions. In all of the behavioral contexts explored through the
HDC models, the VP could be made to behave in a manner that
was appropriate to live human social interactions, coordinating,
following, adapting, and teaching. This was achieved without over-
specifying what behavior the VP should adopt and when it should
adopt it. Instead, the VP tended to mirror the human’s intrinsic
behavioral repertoire; a suitable coupling provided the inter-
action necessary to produce patterns of social coordination. The
latter were neither the product of the VP’s nor the sole outcome
of the human’s behavioral dispositions, but rather a truly emer-
gent collective pattern that resulted from their interaction.

An Experimental Tool. The expansion of the behavioral repertoire—
and the strategy behind the development of the HDC—consists of
implementing principle-based, empirically verified models that

Fig. 4. The HDC in which the VP is governed by the Jirsa–Kelso excitator model (15) of rhythmic and discrete movement generation. (A, C, and E ) Time
series of reciprocal interaction between a human (red) and the VP (blue). Human is leading; VP is following. (B, D, and F ) Related phase space showing
nullclines (green and magenta) and phase flows (black). Notice how the angle and location (a and b) of the green nullcline in relation to the one in
magenta—the cubic curve which remains fixed—dictates the VP dynamics. (A and B) Monostable regime: The human is instructed to produce discrete
movements at will and then return to rest. Parameters of the excitator-based VP: a = 1.3; b = 1; A = 0.1; B = 0.25; τ = 0.1; ω = 1.5. (C and D) Bistable regime:
The human is instructed to switch rapidly between flexion and extension at will. Parameters of the VP: a = 0; b = 2.3; A = 0.1; B = 0.25; τ = 0.1; ω = 1.5. (E
and F) Limit cycle regime: The participant is asked to move his or her finger continuously at a chosen frequency. Parameters of the VP: a = 0; b = 0.5;A = 1.5; B = −0.1;
τ = 1; ω = 1.5.
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approximate the functionally relevant dynamics of human be-
havior for specific tasks and contexts. The HDC paradigm is
open to any sensory modality, and may be adapted to any be-
havioral task. Moreover, a wide variety of processes such as the
recruitment and annihilation of biomechanical degrees of freedom
(51), parametric stabilization (38), sensory anchoring (37), and so
forth, can be incorporated into the HDC. It seems possible that the
same approach can be extended to other situations such as gaze
interaction (52), imitation games (53, 54), and game theory (55), to
name a few.
Neuroscientists have also recently stressed that a fine-grained

analysis of the neural dynamics of social interaction is still
missing, forming as it were the “dark matter” of social neuro-
science (56). One of our motivations in designing the HDC
was to create a tool for rigorous investigations of the neuro-
physiological basis of social interactions. The HDC balances
ecological validity with the constraints of neuroimaging (9)
by allowing full control of chosen parameters from one of
the interacting agents, while at the same time preserving in-
teraction and reciprocity. It thus may become a tool for the
neurobehavioral investigation of social behavior, especially for
uncovering essential nonlinearities in social behavior such as
turn taking, transitions between cooperation and competition,
and the neural underpinnings of attribution of intention in
interactive contexts (24, 43).

Theoretical Potential. The main proviso for further extensions of
the HDC is the availability of good, preferably empirically groun-
ded, theoretical models. Such models can be combined to produce
more complex behavior, along the lines of previous modeling work,
e.g., on handwriting (57). Changes to the same system with time-
varying parameters can be extended to sequences of different
structures and to multiple levels (58). The next logical step in
the extension of the HDC is to endow it with an explicit neural
dynamics. Integrating neural and behavioral modeling in a common
scheme requires tackling coordination among multiple levels (25).
We have shown in the present work how parameter dynamics
provides an efficient way to create behavior on multiple time
scales, completely in accordance with Hebbian and synaptic
plasticity (18, 35).
Besides an extensive body of work at the behavioral level,

extension of the HKB model using neural oscillators has been
undertaken (59–61). Theoretical research has explicitly derived
the HKB equations from neural field models (e.g., refs. 25 and
62) and demonstrated the biophysical relevance of the original
HKB coupling (63). The second HDC was based on the excitator
(15), a model that is also biologically based, homologous to the
FitzHugh–Nagumo model of nerve cell excitation (64). The exci-
tator model has been used to uncover explanatory relationships
between the stability of bimanual coordination patterns and in-
terhemispheric delays in the cerebral cortex (65). Such converging
efforts suggest that endowing the HDC with a model of a brain is

Fig. 5. Transitions between discrete and continuous behavior in the HDC. Here the VP is governed by the Jirsa–Kelso excitator model (15) with human
position y assigned to the input I. Time series of reciprocal interaction between a human (red) and the VP (blue). Human is leading; VP is following. The human
is initially instructed to move briskly between flexion and extension, pausing in-between and then, at will, to switch to producing continuous rhythmic
movement. Here the transition occurs at the dashed line. Parameters of the VP: a = 0; b = 0; A = 0.5; B = 0.025; τ = 1; ω = 1.6.

Fig. 6. Adaptation and parameter dynamics in the HDC. (A) Time series of interaction between an excitator as a VP (blue) adapting its pace to
a human participant (red). Human is leading the interaction; VP is following. (B) Related dynamics of the intrinsic frequency parameter (ω) of the VP
(dashed blue) compared with the dynamics of human and VP’s instantaneous frequency (red and blue dots, respectively). Notice how the intrinsic
frequency of the VP is updated at each cycle and how the parameter dynamics exhibits inertia after the human stops moving. When the latter occurs, frequency
adaptation ceases and the VP returns to its preferred frequency following the damping part of Eq. 7. Parameters of the VP: a = 0; b = 0; A = 1; B = −0.2; τ = 0.1;
ω0 = 1; κ = 1; υ = 1.
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not beyond reach. Earlier work in robotics has meshed together
living, electronic, and simulated components (66–68) and dy-
namical models such as HKB have been incorporated into robots
for sensorimotor control (69, 70) and interrobot interactions
(71). To achieve a desirable degree of realism, the architecture
of a neurally grounded HDC may take inspiration from human
connectomics (72–75). Using such an approach, Dumas et al. (76)
already designed a dyadic model of two interacting brains, in
good agreement with empirical evidence at both neural and social
levels (77). Fully embedding a connectome with Hebbian or
Hebbian-like rules in the HDC might allow testing hypotheses
regarding the emergence of a mirror neuron system (78), and
advance our understanding of learning, language, and their
social foundations (79).

Conclusion
The HDC offers a way to bring mind, brain, and machine to-
gether through behavior. Under such a framework, we have
shown that it is possible to unify and generalize diverse functions
and tasks. The approach is principled: Each new version of the
HDC carries the mathematics of all previous versions (Table 1).
As long as there is a medium for two-way interaction, a deeper
understanding of both the model and what the model is pur-

ported to be of become possible. Once coupled bidirectionally to
an unconstrained, open dynamical system like a human being,
HDC’s behavioral repertoire becomes much richer—in a manner
akin, perhaps, to the way human behavior develops and gains
depth through social interactions. In experiments, the richness of
HDC behavior already led to unsolicited verbal reactions by
human subjects, e.g., attribution of agency to the VP (24). Such
spontaneous expressions suggest that the HDC may qualify as a
Turing test of humanness (80), even surpassing its original scope.
The Turing test implies only that judges are unable to tell if an
agent is a human or a machine, and as such says nothing about
the genuineness of the path toward that decision. Here, the HDC
is a tool to test hypotheses and gain understanding about how
humans interact with each other as well as with machines. In the
HDC paradigm, exploration of the machine’s behavior may be
viewed as an exploration of us as well.
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SI Appendix
Adaptation of the Schöner–Kelso Model. We adapt the Schöner–
Kelso Model (1) to the component level for any intended relative
phase. A coupling term is introduced at the component level of
the Haken–Kelso–Bunz (HKB) model (2), which intentionally
stabilizes a specific relative phase ψ . For an oscillator 1 cou-
pled with an oscillator 2,

Cint =−CðcosðψÞð _x1 − _x2Þ+ sinðψÞωx2Þ;

where xi and _xi stand for position and velocity of oscillator i,
respectively, and ω is the frequency.

Demonstration. For more details, see the derivation of HKB in
Fuchs (3).
Using xjðtÞ= 2r cosðωt+ϕjðtÞÞ= rðeiϕj eiωt + e−iϕj e−iωtÞ, we have

Cint =−C
�
cosðψÞirω�eiφ1eiωt − e−iφ1e−iωt − eiφ2eiωt + e−iφ2e−iωt

�
+ sinðψÞrω�eiφ2eiωt − e−iφ2e−iωt

��
:

Multiplying the HKB oscillator part and this coupling part
by e−iϕ1e−iωt,

Cint =−Crω
�
cosðψÞi

�
1− e−i2ϕ1e−i2ωt − eiðϕ2−ϕ1Þ + e−iðϕ2+ϕ1Þe−i2ωt

�

+ sinðψÞ
�
eiðϕ2−ϕ1Þ − e−iðϕ2+ϕ1Þe−i2ωt

��
:

The rotating wave approximation gives

Cint =−Crω
�
cosðψÞi�1− e−iφ

�
+ sinðψÞ�e−iφ��;

where φ=ϕ2 −ϕ1 is the relative phase.
For the other oscillator, φ=−φ and ψ =−ψ .
The difference of the two sets of equations gives

−2rω _φ=−Crω
�
cosðψÞi�eiφ − e−iφ

�
+ sinðψÞ�e−iφ + eiφ

��

_φ=−C

 
cosðψÞ

 
eiφ − e−iφ

2i

!
+ sinðψÞ

�
eiφ + e−iφ

−2

�!

_φ=−CðcosðψÞsinðφÞ− sinðψÞcosðφÞÞ:
And thus

_φ=−C sinðφ−ψÞ:
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